リッジ型量子細線構造

リッジ型量子細線(QWR)は、 右写真のQWRと示されている部分に電子を閉じ込め、図と垂直方向の運動のみ許す、という、いわば電子を細い線の中に閉じ込めたような構造です。

半導体パターン基板上に分子線エピタキシー法で結晶成長すると、自然に写真のような構造が出来上がります。自然界には、雪の結晶のように人間が手を加えなくとも非常に複雑な構造が生まれてくることがありますが、このリッジ型量子細線の成長過程もこれに似ています。何も人間の手を加えなくても特定の結晶面が現れるような、このような成長は「ファセット成長」と呼ばれています。

自然の成長過程にまかせているので、非常にきれいな細線構造ができることが期待できます。

リッジ型量子細線の作成に関する研究は、現在香川大学教授である小柴俊先生により私の入学前から研究されてきました。私が担当したのは、リッジ型量子細線をレーザーに応用した場合、どのような光学特性が現れるか、であり、これが私の博士論文のテーマでもあります。

博士論文審査に使用したPower Point ファイル(英語です). [10.0 MB]


以下、英語版しかなく大変恐縮ですが、私の具体的な研究内容です。

1. Imaging measurements for investigating the spectral origin

We achieve lasing from the ridge-wire laser, and investigate the spectral origin of photoluminascence and lasing.

As a result, we could clearly distinguish the spatial patterns of quantum wire (QWR) and adjacent quantum wells (side-QW), and we found that the origin of lasing is the transition between higher order excited states of QWRs.

[References]
[1] S. Watanabe et al., Appl. Phys. Lett., 73, 511 (1998).
[2] S. Watanabeet al., Quantum Electronics and Laser Science (QELS) Conference 1999(Baltimore, USA).

PDF file of the APL article 73, 510 (1998) [588 kB].
Presentation at QELS '99.


2. Top-view measurement for investigationg the uniformity and carrier migraion

We observe top-view images of photoluminescence and lasing of Ridge-wire laser, and investigate the uniformity.

As a result we can understand the origin of each PL peak and lasing.



[References]
[1] S. Watanabe et al., Appl. Phys. Lett., 75, 2190(1999). [219 kB]

PDF file of the APL article 75, 2190 (1998).


3. Temperature dependence of the lasing property


The temperature dependence of carrier migration in ridge QWR structures are studied by micro- and macro-photoluminescence measurements.

Above T=40K, the large carrier diffusion length cause the carriers in the QWR region to flow away due to the strutcural inhomogeneity, and thus cause the higher threshold power for lasing.

[References]
[1] S. Watanabeet al., Proceedings of the Sixth international symposium on advanced physical fields (APF-6), pp. 376(2001).

PDF file of the proceedings of APF-6.


4. Numerical calculation for the electronic structures


We develope a method to express wavefunctions of hole states in QWR structures to show how envelope wavefunctions relate to polarization properties of emission/absorption.

This method allows us to easily understand the corespondance between the envelope functions and the polarization-dependent transition matrix elements.


[References]
[1] S. Watanabeet al., Jpn. J. Appl. Phys. Part I, 41,5924-5936 (2002).

PDF file of the JJAP article 41, 5924 (200) [787 kB].


5. Plarization measurement


We study vertically polarized lasing and spontaneous emission in a ridge QWR laser. In particular, we find that most of emissions with energies near the band edge are vertically polarized.

We make numerical calculation, and find that the different effective mass causes different shapes of wave functions between electrons and holes, which results in larger oscillator strength of vertically-polarized transition.

[References]
[1] S. Watanabeet al., to be published in Phys. Rev. B.
[2] S. Watanabeet al., 26th International Conference on the Physics of Semiconductors (2002).

PDF file of the PRB article [712 kB].
PDF file of the proceeding of ICPS 26 [651 kB].