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We develope a method to express wave functions of hole states in semiconductor quantum wire (QWR) structures based on
spatial variation of the valence p-orbital Bloch functions, to show how envelope wave functions relate to polarization-
dependent interband transition. A wave function of a hole state is obtained solving the Schrödinger equation based on the
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ridge QWR structure with mirror symmetry as well as for an asymmetric structure, and discuss the polarization dependence of
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1. Introduction

One dimensional (1D) semiconductor quantum wire
(QWR) structures1–5) have attracted many interests these
days for optical devices due to a peaked structure of 1D
density of states. Especially it is predicted that QWR lasers
achieve less temperature dependence6) and lower threshold
current7) compared to conventional quantum well lasers. In
order to determine and stabilize polarization of the QWR
optical devices, it is important to control polarization-
dependent transition matrix elements of interband transition
by designing potential structures of the QWRs. Optical
polarization anisotropy of the QWRs is induced by
anisotropic wave functions of hole states corresponding to
the potential structures. When we calculate the wave
functions of the designed potential structures, it is useful
to express the hole wave functions directly corresponding to
the polarization-dependent transition matrix elements.

The wave functions of the hole states in the QWRs have
been described in terms of admixtures of ‘‘heavy hole’’
( jz ¼ �3=2) and ‘‘light hole’’ ( jz ¼ �1=2) states8–13)

corresponding to projections of the four-fold degenerate J ¼
3=2 states at the top of the �8 bulk bands. The relative
weight of each state can be obtained by solving the
Schrödinger equation based on the 4� 4 Luttinger Hamil-
tonian14) with the envelope function approximation.15) The
polarization dependence of the interband dipole matrix
element has been derived in terms of the overlap integrals
between the envelope functions of electrons and holes. The
optical anisotropy has been studied experimentally with
photoluminescence excitation measurements by many
authors,2,16–22) and theoretical models explain those experi-
mental results well.19,20,23–28)

Although these calculations have been well confirmed, the
correspondence between the envelope functions of the hole
states and the polarization dependence of the optical
transition is not so clear. The main reason is that authors

have taken uvjz ( jz ¼ 3=2; 1=2;�1=2;�3=2), defined as the
four degenerate Bloch functions at the top of the �8 bulk
bands, as the basis functions. To relate the overlap integrals
between the envelope functions of the electrons and holes to
the linear polarization dependence of the optical transition, it
is useful to represent the hole wave functions in terms of six
bases consisting of the px, py, and pz-orbital Bloch functions
with two spin components, because they separately con-
tribute to the x-, y-, and z-polarized interband transitions.

McIntyre and Sham referred to this important point
before,29) but they did not describe a concrete procedure. In
order to show the practical usefulness of this method, it is
important to make concrete formulations corresponding to
realistic potential shapes of QWRs, and numerically
calculate the wave functions that can be represented as
two-dimensional contour plots. Then we can have much
more intuitive understanding of the overlap integrals and the
transition matrix elements via the expression of a hole wave
function with six bases.

In this article, we develope a method to express wave
functions of hole states in semiconductor QWR structures
based on spatial variation of the valence p-orbital Bloch
functions, to show how envelope functions relate to
polarization-dependent interband transition. The wave func-
tions of the hole states are obtained solving the Schrödinger
equation based on the 4� 4 Luttinger Hamiltonian, and then
recomposed as linear combinations of the p-orbital Bloch
functions. The linear polarization dependence of the optical
interband transition in the x-, y-, and z-directions can be
simply discussed for each direction in terms of two
components of the overlap integrals between the envelope
functions of the electrons and holes. This method can be
applied to any kinds of potential profile.

The structure of the article is as follows. In §2, we
introduce the theoretical framework for this research. The
basic Schrödinger equations and the recomposition of the
wave functions are described in §2.1, and the polarization
dependence of the optical interband transition is discussed in
§2.2. In §2.3, we discuss the band degeneracy at the band
edge due to time-reversal symmetry.

We apply our method to two kinds of potential profiles for
ridge QWR structures at the band edge: a mirror-symmetric
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potential with Vð�y; zÞ ¼ Vðy; zÞ (§3), and an asymmetric
potential (§4), and discuss the polarization dependence of
the interband optical transition.

The shapes of the envelope functions depend on the
quantization axis. Recently, Dupertuis et al. made a general
and systematic theoretical analysis of the symmetry effect on
the wave functions and optical polarization selection rules in
QWRs.30) They pointed out the importance of choosing an
optimal quantization axis corresponding to the potential
symmetry, in order to symmetrize the envelope functions for
the whole Brillouin zone. They showed that the optimal
quantization axis for the mirror-symmetric potential is
perpendicular to the symmetric plane; namely, the y-axis
when Vð�y; zÞ ¼ Vðy; zÞ and the z-axis when Vðy;�zÞ ¼
Vðy; zÞ.30) We formulate the theoretical discussions in §2 by
choosing the y-quantization axis, since it is perpendicular to
the mirror-symmetric plane of the potential that we discuss
in §3. To apply our method to other QWRs with
Vðy;�zÞ ¼ Vðy; zÞ, it is necessary to formulate the method
by choosing the z-quantization axis with appropriate
Hamiltonian and base Bloch functions. The formulation in
this case is described in Appendix A. We discuss the
envelope functions for the asymmetric potential profile in §4
based on the y-quantization axis as used in §2.

2. Theoretical Framework

2.1 Basic equations for electronic states in quantum wires
In this section, we introduce the basic Schrödinger

equation for the wave functions of electrons and holes in a
QWR structure. The wave functions of the hole states are
expressed as linear combinations of the px-, py- and pz-
orbital Bloch functions. We choose the [110], [�1110], and
[001] crystal orientations as the x-, y-, and z-coordinate axes
respectively, and the direction of the wire is assumed to be
parallel to the x-axis. We neglect coupling between the �6,
�8, and �7 bands. We choose the y-axis as the direction of
quantization, since it is perpendicular to the mirror-
symmetry plane of the potential Vð�y; zÞ ¼ Vðy; zÞ that we
discuss in §3.

The twice spin-degenerate wave functions of the electrons
in QWR structures (s ¼ 1

2
; � ¼";#) are described as a direct

product of an envelope function of �cðy; zÞ and uc� , defined as
the cell-periodic Bloch function at the bottom of the �6 bulk
bands, such that

�c�ðrÞ ¼
eikxxffiffiffiffiffi
Lx

p �cðy; zÞ � uc�; ð2:1Þ

where eikxx denotes a plane wave along the wire direction
and Lx is the length of the wire. If the origin of the potential
energy (V ¼ 0) is chosen to be at the top of the �8 bulk
bands, the Schrödinger equation for the envelope function of
the electrons can be written as"
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where m�
e ðy; zÞ is the spatially varying effective mass of the

electrons, Eg is the band gap energy, Veðy; zÞ is the spatially

varying confinement potential for the electrons, and Ee is the
eigen quantization energy.

The wave function of the holes in QWRs cannot be
represented by a single Bloch function, but by a linear
combination of the four products of the envelope functions
and uvjy ( jy ¼ f3

2
; 1
2
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four-degenerate Bloch functions at the top of the �8 bulk
bands, such that
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eikxxffiffiffiffiffi
Lx
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X
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�vjy ðy; zÞ � u
v
jy
: ð2:3Þ

The Schrödinger equation for the envelope functions of
the holes with four parts of �vjy can be represented by the
4� 4 Luttinger Hamiltonian H�8 , such that

½H�8 þ ðVhðy; zÞ � EvÞI�

�v3=2ðy; zÞ
�v1=2ðy; zÞ
�v�1=2ðy; zÞ
�v�3=2ðy; zÞ

0
BBB@

1
CCCA ¼ 0; ð2:4Þ

where Vhðy; zÞ is the spatially varying confinement potential
for the holes, Ev is the eigen quantization energy, and I is a
4� 4 unit matrix. A concrete description of the Luttinger
Hamiltonian and the corresponding base Bloch functions uvjy
is given in Appendix A. The important point is that all the
matrix elements of the Luttinger Hamiltonian are real
operators, so all the envelope components of ð�v3=2; �v1=2;
�v�1=2; �

v
�3=2Þ

T in eq. (2:4) are real functions.
To relate the overlap integrals of the envelope functions

directly to the polarization dependence of the optical
transition, we recompose them as linear combinations of
the p-orbital Bloch functions. The wave function of the hole
states can be recomposed instead of eq. (2:3) as

�vðrÞ ¼
eikxxffiffiffiffiffi
Lx

p
X
r¼x;y;z

�vr;"ðy; zÞjr "i þ
X
r¼x;y;z

�vr;#ðy; zÞjr #i

" #
;

where jxi, jyi, and jzi denote the cell-periodic px-, py-, and
pz-orbital Bloch functions, respectively; j "i and j #i denote
spin up and down components, respectively; and

�vx;"ðy; zÞ ¼ i
1ffiffiffi
2
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1ffiffiffi
6

p �v1=2: ð2:5Þ

To obtain eq. (2:5), we substitute the base Bloch functions
uvjy [eq. (A�3) in Appendix A] in eq. (2:3). The wave function
of the hole states can thus be described in terms of these six
parts of the envelope functions by using the new base Bloch
functions defined as jr�i. Note that the �vy;� and �vz;� are real
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functions, while the �vx;� are pure imaginary functions. The
shapes of the six envelope functions in eq. (2:5) change
when we choose a different quantization axis, since the spin
parts of the base Bloch functions change.

2.2 Polarization dependence of the interband transition
defined by the spatial variation of valence p-orbital
Bloch functions

We next discuss the polarization dependence of the
interband optical transition between the conduction and
valence bands in 1D QWR structures, by using the envelope
functions based on the p-orbital Bloch functions.

With a dipole approximation, the probability of the optical
transition is proportional to jMj2, defined as the square of the
dipole matrix element, such that

jMj2 �
X
�¼";#

h�c�j� � pj�
vi

�� ��2

¼
X
�¼";#

X
r¼x;y;z

Ir;�huc�j� � pjri

�����
�����
2

; ð2:6Þ

where � � ð�x; �y; �zÞ is the polarization vector of linearly
polarized light, p � ðpx; py; pzÞ is the momentum operator,
and Ir;� �

RR
�cðy; zÞ�vr;�ðy; zÞdydz is the overlap integral

between the envelope functions of the electrons and holes.
The selection rules for the cell-periodic Bloch parts11) are
described as

huc�j pr0 jri ¼ �r0 ;rim0P=h� ; ð2:7Þ

where P is the Kane matrix element.31) We then obtain

jMj2 ¼
m0P

h�

� �2 X
�¼";#

j� � I�j2; ð2:8Þ

where I� � ðIx;� ; Iy;� ; Iz;�Þ. jMrj2, defined as jMj2 for light
polarized along the r-direction, is given by,

jMrj2 ¼
m0P

h�

� �2 X
�¼";#

jIr;�j2; ð2:9Þ

so that the sum (� ¼";#) of jIr;�j2 � j
RR

�c�vr;�dydzj
2 is

proportional to the optical interband transition for light
polarized along the r-direction.

jMj2 in eq. (2:8) can also be written as

jMj2 ¼
m0P

h�

� �2 X
�¼";#

j� �
ZZ

�cðy; zÞ�v�ðy; zÞdydzj
2; ð2:10Þ

where �v� ¼ ð�vx;� ; �vy;� ; �vz;�Þ and the integral is evaluated
individually for each component of the vector. Comparisons
between the shapes of �cðy; zÞ and the components of �v�ðy; zÞ
can be used to directly derive the polarization dependence of
the optical transition for linearly polarized light. Note that
�vx;� is the pure imaginary function, whereas �vy;� and �vz;� are
the real functions from eq. (2:5). Thus, only the two-
dimensional vector ð�vy;�ðy; zÞ; �vz;�ðy; zÞÞ, defined as the y-
and z-parts of �v�ðy; zÞ, exists in real space.

2.3 Band degeneracy at the band edge
Equations (2:4) and (2:5) uniquely determine the envelope

functions of the hole states in general. At the band edge
(kx ¼ 0), however, they cannot be determined uniquely

because there are degenerate eigenstates due to time-reversal
symmetry.

The time-reversal symmetry causes symmetry with
respect to the diagonal parts of the elements of the Luttinger
Hamiltonian, leading to the two orthogonal degenerate
eigenstates in eq. (2:4) as follows:

�v3=2ðy; zÞ
�v1=2ðy; zÞ
�v�1=2ðy; zÞ
�v�3=2ðy; zÞ

0
BBB@

1
CCCAand
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��v�1=2ðy; zÞ
�v1=2ðy; zÞ
��v3=2ðy; zÞ

0
BBB@

1
CCCA

uv3=2

uv1=2

uv�1=2

uv�3=2

2
6664

3
7775; ð2:11Þ

where [uvjy ] describes the cell-periodic Bloch part corre-
sponding to each row. The band degeneracy at kx ¼ 0 is
independent of the shape of the confinement potential.

From the two orthogonal degenerate eigenstates, we
derive two degenerate pairs, each consisting of the six parts
of the recomposed envelope functions in eq. (2:5):

�vx;"ðy; zÞ
�vy;"ðy; zÞ
�vz;"ðy; zÞ
�vx;#ðy; zÞ
�vy;#ðy; zÞ
�vz;#ðy; zÞ

0
BBBBBBBB@

1
CCCCCCCCA
and

�vx;#ðy; zÞ
��vy;#ðy; zÞ
��vz;#ðy; zÞ
��vx;"ðy; zÞ
�vy;"ðy; zÞ
�vz;"ðy; zÞ

0
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1
CCCCCCCCA

jx "i
jy "i
jz "i
jx #i
jy #i
jz #i

2
666666664

3
777777775
; ð2:12Þ

where [jr�i] describes the cell-periodic Bloch part corre-
sponding to each row.

Note that all the subscripts � of the envelope functions are
opposite to each other for the degenerate pairs. Since the
envelope functions of the electrons corresponding to the
base Bloch functions with spin up and down components are
equivalent, as shown in eq. (2:1), the descriptions of jMj2
become the same for one and complementary hole wave
functions. The difference in sign (‘‘þ’’ and ‘‘�’’) does not
affect the calculation of the transition matrix element, so it is
sufficient to consider only one of the degenerate pairs in
discussing the properties of the hole state at the band edge.

The degeneracy at the band edge causes the arbitrary
solutions of arbitrary linear combinations of the orthogonal
degenerate eigenstates. To uniquely determine the envelope
function, we choose a solution to maximize the probability
for the y- and z-parts of the "-component, defined asP

r¼y;z

RR
j�vr;"ðy; zÞj

2dydz, and to minimize the probability
for the y- and z-parts of the #-component.

3. Numerical Analysis for the Mirror-Symmetric Con-
finement Potential

3.1 Numerical model for a ridge QWR structure
In this section, we calculate the envelope functions of the

electrons [�cðy; zÞ] and the holes (�vr;� ; r ¼ x; y; z; and � ¼
";#) at the band edge for a modeled ridge QWR structure
with mirror symmetry. Figure 1 shows a numerical model
for the simplified ridge QWR structure we analyze in this
section. Note that the shape of the potential profile has
mirror symmetry with respect to y; namely, Vð�y; zÞ ¼
Vðy; zÞ. The crystal orientation of the model is the same as
both that of a real ridge QWR structure32–34) and that we
defined in the previous section.

A GaAs region embedded in Al0:3Ga0:7As provides
vertical confinement in the z-direction. The GaAs region
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bends at two symmetric points to form a QWR and two
ð111ÞB side-QW structures with the same width of 5 nm
along the z-direction. The bent GaAs region provides
additional confinement; namely, lateral confinement along
the GaAs layer, since the absolute values of the quantization
energies in the side-QWs are higher than that in the QWR,
which confines carriers in the QWR region. The carrier
confinement energies due to lateral confinement, or lateral
confinement energies, are defined as the differences between
the quantization energies of the side-QWs and the QWR.
The lateral width of the QWR region is assumed to be
10.6 nm.

The Schrödinger equations [eqs. (2:2) and (2:4)] are
numerically solved by finite element analysis. A calculation
region is defined as a ridge shaped structure with 70.7 nm
toward y-direction, and 35 nm toward z-direction as shown
in Fig. 1. We divide the calculation region rectangularly at
the same interval of 0.88 nm toward y- and 1.25 nm toward
z-directions. We then draw a diagonal line in each
rectangular cell to divide it into two right triangular
elements. The diagonals are drawn mirror-symmetrically
with respect to y corresponding to the potential structure. As
a result, 4480 right triangular elements with 2349 nodes are
made in the calculation region. It is possible to divide the
region at different intervals to shorten the calculation time.
We divide the region at the same interval because it is easy
to estimate accuracy of the results that only depends on the
size of the element, and it is also easy to represent the results

as contour plots. The error of the eigen energies is estimated
to be less than 5%. The material parameters for GaAs and
Al0:3Ga0:7As are the same as those in refs. 21 and 35. and are
listed in Table I.

In the case of a mirror-symmetric potential, the envelope
functions are symmetrized for the whole Brillouin zone
when we choose a proper quantization axis.30) The envelope
functions are symmetrized with even or odd parity in this
section, since we choose a quantization axis perpendicular to
the symmetric plane.30) We call the parity ‘‘even’’ when the
envelope function satisfies the relation �ð�y; zÞ ¼ �ðy; zÞ,
and ‘‘odd’’ when �ð�y; zÞ ¼ ��ðy; zÞ. The symmetry of each
recomposed envelope function is described in Appendix B.

3.2 Numerical results for the energy level and the
corresponding envelope wave functions

The energy levels of the confined eigenstates of the
electrons and holes at kx ¼ 0 are shown in Fig. 2. The
quantization energy of electrons for the side-QWs is
134 meV higher than the �6 bulk bands of GaAs, and we
take this as the origin of the confinement energy level for the
electrons. For holes, the quantization energy of heavy holes
for the side-QWs is 30.5 meV higher than the �8 bulk bands
of GaAs, so we take that as the origin of the confinement
energy level in this case. The quantization energy of light
holes for the side-QWs is 48 meV higher than that of heavy
holes.

There are two confined states for both the electrons and
the holes. The lateral confinement energy of the electrons is
�39:6meV at the ground (e1) state and �3:74meV at the
second (e2) state. The lateral confinement energy of the
holes is �3:45meV at the ground (h1) state and �0:11meV
at the second (h2) state.

Figure 3 shows contour plots of the squared envelope
functions defined as j�cðy; zÞj2 for the (a) e1 and (b) e2 states
at the band edge. The notations ‘‘þ’’ and ‘‘�’’ represent the
sign of �cðy; zÞ. The two-dimensional confinement causes
both envelope functions to be well confined at the top of the
ridge structure. Note that �cðy; zÞ for the e1 state is an even
function with respect to y, while for the e2 state it is an odd
function with a node at the top of the ridge structure. The e2
state is derived from the second subband due to the lateral
confinement along the GaAs layer.

Figures 4(a)–4(f) show the six parts of the squared
envelope functions for the h1 state, defined as j�vr;�j

2(r ¼
x; y; z; � ¼";#) at the band edge. The probability of each
part, defined as

RR
j�vr;�ðy; zÞj

2dydz, is also shown. The
notations ‘‘þ’’ and ‘‘�’’ represent the sign of �vr;�ðy; zÞ. We
choose the solution to maximize the probability for the y-
and z-parts of the "-component, as discussed in §2.3.

Fig. 1. A calculation model for a GaAs/Al0:3Ga0:7As ridge QWR

structure. The GaAs region bends at two symmetric points to form a

QWR and two ð111ÞB side-QW structures with the same width of 5 nm

along the z-direction. The bent GaAs region provides lateral confinement

along the GaAs surface. The lateral confinement width is assumed to be

10.6 nm. We choose the x-, y-, and z-axes as the [110](the wire direction),

[�1110], and [001] (the growth direction) directions respectively, corre-

sponding to the orientations of the real ridge QWR structure. Note that the

shape of the potential profile has mirror symmetry with respect y; namely,

Vð�y; zÞ ¼ Vðy; zÞ.

Table I. Material parameters.21,35)

Materials GaAs Al0:3Ga0:7As

Energy gap (Eg) 1.519 eV 1.893 eV

Band offsets 68/32

electron effective mass (me) 0.0665m0 0.0916m0

Luttinger parameter 1 (	1) 6.790 5.890

Luttinger parameter 2 (	2) 1.924 1.716

Luttinger parameter 3 (	3) 2.681 2.295
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Figures 4(g) and 4(h) represent the spatial variation of the
vectors, or the vector fields defined as ½�vy;"ðy; zÞ; �vz;"ðy; zÞ�
and ½�vy;#ðy; zÞ; �vz;#ðy; zÞ� for the h1 state. As discussed in
§2.2, only the y- and z-parts of �v� ¼ ð�vx;� ; �vy;� ; �vz;�Þ exist in
real space. The colors correspond to the lengths of the
vectors, and the coordinates of the points are located at the
centers of the vectors, as shown in the insets.

The parities of the envelope functions are (odd, even, odd)
for the "-component, and (even, odd, even) for the #-
component. The wave functions of the hole states are
mixtures of even and odd states, and thus they cannot be
described as either entirely even or entirely odd wave
functions in general.30)

The h1 state is dominated by (b) �vy;", (c) �vz;", and (d) �vx;#,

since the probabilities of these parts are much larger than
those of the other three parts. The two-dimensional
confinement causes (d) �vx;# to be well confined at the top
of the ridge structure, and its probability is the largest among
the six parts. The properties of (b) �vy;" and (c) �vz;" are
summarized as the vector field (�vy;", �vz;") in Fig. 4(g). The
maximum vector length is at the top of the ridge structure, so
that the vector field (�vy;", �vz;") is well confined at the top.
Note that the directions of all the vectors are along the
potential layer, which means that the y- and z-parts of the "-
component only contains the p-orbital Bloch functions
parallel to the potential layer at every local point. This is
analogous to the heavy hole states of the QW structures that
only contain the p-orbital Bloch functions parallel to the
potential layer. So we regard the h1 state as a ‘‘heavy-hole-
like’’ state. Lateral confinement causes this state to be well
confined in the 1D QWR region.

The other three components of the h1 state with small
probabilities are considered to originate from valence band
mixing of the QWR structures. In particular, the vector field
ð�vy;#; �vz;#Þ in Fig. 4(h) shows that the components with the p-
orbital Bloch function perpendicular to the potential layer
mix with a minute probability.

Figures 5(a)–5(f) show the six parts of the squared

Fig. 2. The energy levels of the eigenstates of electrons and holes at

kx ¼ 0 for the calculation model shown in Fig. 1. There are two confined

states for both electrons and holes. The lateral confinement energies,

defined as the differences in quantization energies between the side-QWs

and the QWR, are �39:6 (e1), �3:74 (e2), �3:45 (h1), and �0:11 (h2)

meV. The quantization energy of the h10 state is 16.6 meV higher than

that of the heavy holes but 31.4 meV lower than that of the light holes for

the side-QWs.

Fig. 3. Contour plots of the squared envelope functions of electrons

defined as j�cðy; zÞj2 for the (a) ground (e1) and (b) second (e2) states at

the band edge (kx ¼ 0). The lateral confinement energies are (a)

�39:6meV and (b) �3:74meV. The wave function is normalized so

that
RR

j�cðy; zÞj2dydz ¼ 1 in each figure. The contour-plot lines divide the

square of the envelope function into equal parts in (a), and the same

interval as (a) is used in (b). The notations ‘‘þ’’ and ‘‘�’’ represent the

sign of �cðy; zÞ. Note that the e1 state has even parity with respect to y

[�cð�y; zÞ ¼ �cðy; zÞ], while the e2 state has odd parity [�cð�y; zÞ ¼
��cðy; zÞ].
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envelope functions for the h2 state at the band edge. Figures
5(g) and 5(h) represent ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� and ½�vy;#ðy; zÞ;
�vz;#ðy; zÞ� for the h2 state. The h2 state is also dominated by
(b) �vy;", (c) �vz;", and (d) �vx;#, but the parity of each part is
opposite to that for the h1 state. �vx;# has a node at the top in
Fig. 5(d). The vector with the local minimum length is also
at the top in Fig. 5(g). As the directions of the vectors in Fig.
5(g) are along the potential layer, the h2 state is considered
to be a second heavy-hole-like state. As for the other
components, �vx;" in Fig. 5(a) has two points with maximum
values and contains two nodes.

The heavy-hole-like states whose quantization energies
are higher than that of the heavy hole state of the side-QWs
spread over the side-QW regions. But some parts of the
envelope functions of the tenth (h10) state, whose quantiza-

tion energy is higher than that of the heavy hole state of the
side-QWs, are again well confined at the top.

Figures 6(a)–6(f) show the six parts of the squared
envelope functions for the h10 state at the band edge. The
quantization energy of the h10 state is 16.6 meV higher than
that of the heavy holes, but 31.4 meV lower than that of the
light holes for the ð111ÞB side-QWs, as shown in Fig. 2.

The six parts of the envelope functions can be divided into
two groups. The envelope functions (a) �vx;", (c) �vz;", and (e)
�vy;# each have nine nodes and spread over the side-QW
regions, while (b) �vy;", (d) �vx;#, and (f) �vz;# are each well
confined at the top of the ridge structure. The latter group is
considered to largely contain the ‘‘light-hole-like’’ state
which is confined due to the lateral confinement. We regard
the h10 state as the mixing state between the tenth heavy-
hole-like state and the ground light-hole-like state.

3.3 Polarization dependence of the interband optical
transition

The polarization dependence of the interband optical
transition is derived from the magnitude of the overlap
integral between the envelope functions of the electrons and
holes. The sum (� ¼";#) of the square of the overlap
integrals between �c in Fig. 3 and �vr;� in Figs. 4–6 is

Fig. 4. (a)–(f) Contour plots of the six parts of the squared envelope

functions for the hole ground (h1) state at the band edge. The lateral

confinement energy is �3:45meV. (a)–(c) represent the "-components of

(a) j�vx;"ðy; zÞj
2, (b) j�vy;"ðy; zÞj

2, and (c) j�vz;"ðy; zÞj
2. (d)–(f) represent the

#-components of (d) j�vx;#ðy; zÞj
2, (e) j�vy;#ðy; zÞj

2, and (f) j�vz;#ðy; zÞj
2. The

wave function is normalized so that
P

�¼";#
P

r¼x;y;z

RR
j�vr;�ðy; zÞj

2

dydz ¼ 1. The contour-plot lines divide the square of the wave function

into the same intervals in (b)–(d), and in (a), (e) and (f) the intervals are

(a) 5, (e) 40, and (f) 20 times shorter. The probabilities of each p-orbital

Bloch state, defined as
RR

j�vr;�ðy; zÞj
2dydz, are (a) 7.35%, (b) 34.4%, (c)

10.3% (d) 46.4%, (e) 0.43%, and (f) 1.06%. The notations ‘‘þ’’ and ‘‘�’’

represent the sign of �vr;�ðy; zÞ. Note that (b), (d), and (f) have even parity,

while (a), (c), and (e) have odd parity. (g), (h) Spatial variations of the

vectors, or the vector fields defined as ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� and

½�vy;#ðy; zÞ; �vz;#ðy; zÞ� for the h1 state. The colors correspond to the lengths

of the vectors, and the coordinates of the points are located at the centers

of the vectors, as described in the insets. The lengths of the vectors in (h)

are multiplied by 5 compared to (g).

Fig. 5. (a)–(f) Contour plots of the six parts of the squared envelope

functions for the h2 state at the band edge. The lateral confinement energy

is �0:11meV. The contour-plot lines divide the square of the wave

function into the same intervals in (a)–(d), and the intervals are 10 times

shorter in (e) and (f). The probabilities of each p-orbital Bloch state are

also shown. (g), (h) Spatial variations of the vectors, or the vector field

defined as ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� and ½�vy;#ðy; zÞ; �vz;#ðy; zÞ� for the h2 state.

The lengths of the vectors in (h) are multiplied by 5 compared to (g).
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proportional to the optical transition probability for r-
polarized light.

We first investigate the optical transitions between the
electron and h1 states; namely, the e1–h1 and e2–h1
transitions.

The upper part of Table II shows the squares of the
overlap integrals of jIr;�j2 � j

RR
�c�vr;�dydzj

2 for the e1–h1
transition for all components of r ¼ x; y; z, and � ¼";#. The
quantity ðh�=m0PÞ2jMrj2 ¼ jIr;"j2 þ jIr;#j2 is the normalized
square of the interband dipole matrix element for light
polarized along the r-direction.

The parity of the "-component of the h1 state is (odd,

even, odd) as shown in Figs. 4(a)–4(c). Thus only jIy;"j2
remains for the "-component with overlaps between the
even e1 envelope function, as shown in Fig. 3(a). jIy;"j2 has a
large value, since both �c and �vy;" are well confined at the
top of the ridge structure.

The parity of the #-component of the h1 state is (even,
odd, even), which is opposite to that of the "-component.
Then jIx;#j2 and jIz;#j2 remain for the #-component. jIx;#j2
also has a large value, since �vx;# is also well confined at the
top of the ridge structure. The value of jIz;#j2, however, is
very small because the probability for �vz;# is very small.

The sums ðh�=m0PÞjMrj2 ¼ jIr;"j2 þ jIr;#j2 show that the
optical transition for light polarized along the x- and y-
directions has a large probability, while the transition for z-
polarized light is almost forbidden. The value ðh�=m0PÞjMxj2
(parallel to the wire) is the largest one, which is a
characteristic property of 1D QWR structures. The oscillator
strength is largest for x-polarized light, which mainly results
from the probability density being the largest for the px
components of the h1 state.

The lower part of Table II shows jIr;�j2 and ðh�=m0PÞ2
jMrj2 for the e2–h1 transition. The positions of the zeros for
the six parts of jIr;�j2 are opposite to those for the e1–h1
transition, since the parity of the e2 state is odd and opposite
to that of the e1 state. The sums ðh�=m0PÞjMrj2 show that the
optical transition for light polarized along the z-direction has
the largest probability. The oscillator strength is largest for
the z-polarized light, due mainly to the probability for �vz;"
being the largest among the three odd components of the h1
state.

We next consider the optical transitions between the
electron and h2 states; namely, the e1–h2 and e2–h2
transitions. Table III shows the squares of the overlap
integrals of jIr;�j2 and ðh�=m0PÞ2jMrj2 for the e1–h2 and e2–
h2 transitions. The positions of the zeros for the six parts of
jIr;�j2 are opposite to each other for the e1–h2 and e2–h2
transitions, since the parities of the e1 and e2 states are
opposite. The sums ðh�=m0PÞjMrj2 show that the polarization
direction with the maximum transition probability is the z-
direction for the e1–h2 transition. As for the e2–h2
transitions, the optical transition probabilities for light
polarized along the x- and y-directions are larger.

When we compare Table III to Table II, we see that the
positions of the zeros for the e1–h2 transition are opposite to
those for the e1–h1 transition, because the parities of
�vr;�ðy; zÞ for the h1 state are all opposite to those for the h2
state. The squares of the interband dipole matrix elements
thus depend on the shapes of both the electron and hole
envelope functions. The positions of the zeros and the larger

Table II. Squares of the overlap integrals and the normalized squares of

the interband dipole matrix element for light polarized along the r-

direction, for the e1–h1 and e2–h1 transitions.

r jIr;"j2 jIr;#j2 ðh�=m0PÞ2jMrj2

x 0 0.40 0.40

e1–h1 y 0.29 0 0.29

z 0 0.0084 0.0084

x 0.059 0 0.059

e2–h1 y 0 0.0015 0.0015

z 0.079 0 0.079

Fig. 6. (a)–(f) Contour plots of the six parts of the squared envelope

functions for the h10 state at the band edge. The contour-plot lines divide

the square of the wave function into the same intervals in all six figures.

The probabilities of each p-orbital Bloch state are also shown. Note that

the even components of (b), (d), and (f) are well confined at the top. (g),

(h) Spatial variations of the vectors, or the vector fields defined as

½�vy;"ðy; zÞ; �vz;"ðy; zÞ� and ð�vy;#ðy; zÞ; �vz;#ðy; zÞÞ for the h10 state. The

lengths of the vectors are at the same scale in each figure.

Table III. Squares of the overlap integrals and the normalized squares of

the interband dipole matrix element, for the e1–h2 and e2–h2 transitions.

r jIr;"j2 jIr;#j2 ðh�=m0PÞ2jMrj2

x 0.022 0 0.022

e1–h2 y 0 1:8� 10�4 1:8� 10�4

z 0.026 0 0.026

x 0 0.19 0.19

e2–h2 y 0.090 0 0.090

z 0 0.020 0.020
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transition matrix elements are the same for the e1–h2 and
e2–h1 transitions, and also for the e1–h1 and e2–h2
transitions. The values of jMxj2 and jMyj2 of the e2–h2
transition are smaller than those of the e1–h1 transition. The
envelope functions for the h2 state spread over the side-QW
region much more than for the e2 state, so the overlap
integrals become smaller.

Table IV shows the squares of the overlap integrals of
jIr;�j2 and ðh�=m0PÞ2jMrj2 for the e1–h10 transition. The even
envelope functions of the h10 state [Figs. 6(b), 6(d), and
6(f)] are well confined at the top of the ridge structure, so the
overlap integrals have relatively large values. The values of
ðh�=m0PÞjMrj2 in Table IV show that jMzj2 has the largest
value.

4. Wave Functions and Optical Transition for the
Asymmetric Confinement Potential

4.1 Envelope wave functions for the asymmetric confine-
ment potential

In this section, we calculate the envelope functions for the
asymmetric confinement potential of the ridge QWR
structure and discuss the polarization dependence of the
optical transition. The asymmetric ridge QWR structure is
shown in Fig. 7(a). The confinement width of the right-hand
side-QW is 25% smaller than that of the left-hand side-QW.
The other parameters are the same as those shown in Fig. 1.
The lateral confinement energies are defined as the
differences between the quantization energies of the left-
hand side-QW and the QWR.

There are two confined states for electrons and only one
confined state for holes. The lateral confinement energy of
the electrons is �38:8meV at the ground (e1) state and
�0:724meV at the second (e2) state; the lateral confinement
energy of the holes at the ground (h1) state is �2:77meV.

Figure 7 shows contour plots of the squared envelope
functions defined as j�cðy; zÞj2 for the (a) e1 and (b) e2 states
at the band edge. The envelope function of the e2 state is
largely influenced by the asymmetric property of the
potential, and it merges into the left-hand side-QW.

Figures 8(a)–8(f) show the six parts of the squared
envelope functions for the h1 state at the band edge. Figures
8(g) and 8(h) represent the vector fields ½�vy;"ðy; zÞ; �vz;"ðy; zÞ�
and ½�vy;#ðy; zÞ; �vz;#ðy; zÞ� for the h1 state. The h1 state is
considered to be the heavy-hole-like state, since the
dominant vector field ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� only contains the
p-orbital Bloch functions parallel to the potential layer. The
asymmetric potential causes the asymmetric profiles of the
envelope functions.

4.2 Polarization dependence of the optical transition for
the asymmetric confinement potential

Table V shows the squares of the overlap integrals of
jIr;�j2 (r ¼ x; y; z; � ¼";#) and ðh�=m0PÞ2jMrj2 for the e1–h1

and e2–h1 transitions for the asymmetric potential. All the
six overlap integrals of jIr;�j2 have finite values for both
transitions.

It should be noted that for the asymmetric confinement
potential, the polarization vector with the maximum
transition probability is not always parallel to the x-, y-, or
z-directions. We now return to the general formulation of the
square of the dipole matrix element in eq. (2:8). Since �vx;�
and the overlap integrals of Ix;� are pure imaginary functions,
we obtain

jMj2 ¼
m0P

h�

� �2 X
�¼";#

½j�xIx;�j2 þ ð�yIy;� þ �zIz;�Þ2�: ð4:1Þ

Note that jMj2 for light polarized along the wire (the x-
direction) is independent, whereas that for light polarized
inside the y–z confinement plane has a cross term. When we
assume the interband optical transition inside the y–z
confinement plane as � ¼ ð0; sin 
; cos 
Þ, eq. (4:1) can be
written as

jMð
Þj2 ¼
m0P

h�

� �2X
�¼"#

ðIy;� sin 
 þ Iz;� cos 
Þ2

¼
m0P

h�

� �2X
�¼"#

I2� cos
2ð
 � 
�Þ; ð4:2Þ

Table IV. Squares of the overlap integrals and the normalized squares of

the interband dipole matrix element, for the e1–h10 transition.

r jIr;"j2 jIr;#j2 ðh�=m0PÞ2jMrj2

x 0 0.014 0.014

e1–h10 y 0.049 0 0.049

z 0 0.12 0.12

Fig. 7. Contour plots of the squared envelope functions of electrons

defined as j�cðy; zÞj2 for the (a) ground (e1), and (b) second (e2) states at

the band edge for an asymmetric potential. The confinement width of the

right-hand side-QW is 25% smaller than that of the left-hand side-QW.

The another parameters are the same as those shown in Fig. 1. The lateral

confinement energies are (a) �38:8meV and (b) �0:724meV for the e1

and e2 states, respectively. The wave function is normalized so thatRR
j�cðy; zÞj2dydz ¼ 1 in each figure. The contour-plot lines divide the

square of the envelope function into the same intervals as in Fig. 3.
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where

I� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2y;� þ I2z;�

q
;


� ¼ arctanðIy;�=Iz;�Þ: ð4:3Þ


� is not equal to 0 or �=2 for the asymmetric confinement
potential.

Figure 9 shows polar plots of ðh�=m0PÞ2jMð
Þj2 in eq. (4:2)
for the e1–h1 and e2–h1 transitions for the asymmetric
potential. The angle 
 with the maximum transition
probability inside the confinement plane is 81.4� for the
e1–h1 transition and 24� for the e2–h1 transition. The
polarization axes with the maximum transition probabilities
are inclined toward the first quadrant for both transitions.
Table V also shows the values of ðh�=m0PÞ2jMrj2 correspond-
ing to the directions of the polarization vector with the
maximum [ðh�=m0PÞ2jMMaxj2] and minimum [ðh�=m0PÞ2
jMMinj2] transition probabilities inside the confinement plane
for the e1–h1 and e2–h1 transitions. The degree of linear
polarization inside the confinement plane, defined as
ðjMMaxj2 � jMMinj2Þ=ðjMMaxj2 þ jMMinj2Þ, is 0.94 for the
e1–h1 transition and 0.99 for the e2–h1 transition. Thus
the e1–h1 and e2–h1 transitions are almost linearly polarized
toward 81.4 and 24�, respectively, inside the confinement
plane.

To understand Fig. 9, namely, to explain the directions of

Fig. 9. Polar plots of the normalized square of the interband dipole matrix

element, defined as ðh�=m0PÞ2jMð
Þj2, for the (a) e1–h1 and (b) e2–h1

transitions for asymmetric potential. The largest values for light polarized

inside the confinement plane are 0.30 at 81� for the e1–h1 transition and

0.068 at 24� for the e2–h1 transition.

Table V. Squares of the overlap integrals and normalized squares of the

interband dipole matrix element for the e1–h1 and e2–h1 transitions for

the asymmetric potential profile.

r jIr;"j2 jIr;#j2 ðh�=m0PÞ2jMrj2

x 0.013 0.41 0.42

y 0.29 8.6 � 10�4 0.29

e1–h1 z 0.0071 0.0097 0.017


=81.4� 0.30 2.1 � 10�4 0.30


=171.4� 6.1 � 10�6 0.010 0.010

x 0.043 0.013 0.057

y 0.012 9.1�10�4 0.012

e2–h1 z 0.057 1.6�10�4 0.057


=24� 0.069 5.6�10�4 0.069


=114� 1.9�10�6 5.0�10�4 5.1�10�4

Fig. 8. (a)–(f) Contour plots of the six parts of the squared envelope

functions for the h1 state at the band edge for the asymmetric potential.

The lateral confinement energy is �2:77meV. The contour-plot lines

divide the square of the wave function into the same intervals in (b)–(d),

and in (a), (e), and (f) the intervals are (a) 5, (e) 40, and (f) 20 times

shorter. The probabilities of each p-orbital Bloch state are also shown.

(g), (h) Spatial variations of the vectors, or the vector fields defined as

ð�vy;"ðy; zÞ; �vz;"ðy; zÞÞ and ð�vy;#ðy; zÞ; �vz;#ðy; zÞÞ for the h1 state for the

asymmetric potential. The lengths of the vectors in (h) are multiplied by 5

compared to (g).
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the polarization vectors with the maximum transition
probabilities inside the confinement plane for the e1–h1
and e2–h1 transitions, it is useful to compare the shapes of
the electron envelope functions in Fig. 7 and the dominant
vector field ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� of the h1 state in Fig. 8(g).
The envelope function of the e1 state is well confined at the
top of the ridge structure, as shown in Fig. 7(a). Thus, when
we calculate the e1–h1 transition matrix element, the
envelope function of the e1 state largely overlaps with that
of the h1 state at the top of the ridge structure. The directions
of the vector field ½�vy;"ðy; zÞ; �vz;"ðy; zÞ� in Fig. 8(g) almost
point in the y-direction at the top of the ridge structure, so
the transition matrix element for the e1–h1 transition is
almost polarized along the y-direction.

On the other hand, the maximum probability density of
the e2 state is at the left-hand side of the ridge structure and
largely merges into the left-hand side-QW, as shown in Fig.
7(b). In this region, the directions of the vector field
½�vy;"ðy; zÞ; �vz;"ðy; zÞ� of the h1 state are along the left-hand
side-QW structure at 35.3� inside the confinement plane.
The transition matrix element is thus polarized nearly along
the left-hand side-QWs for the e2–h1 transition. As the
envelope function of the e2 state also has a large probability
at the right-hand side of the ridge structure, the polarization
angle is smaller than 35.3�. The overlap between the e2 and
h1 envelope functions is small, so the maximum transition
probabilty is smaller than that for the e1–h1 transition. Thus,
the spatial variation of the valeince p-orbital Bloch functions
suggests the polarization dependence of the optical transition
also in the asymmetric potentials.

We finally compare the transition matrix element along
the x-direction to that inside the confinement y–z plane.
ðh�=m0PÞ2jMrj2 in Table V shows that for the e1–h1
transition the optical transition for light polarized along the
x-direction has the largest probability. As for the e2–h1
transition, the optical transition for light polarized to 24�

inside the confinement y–z plane has the largest probability,
but all the values are small.

5. Conclusions

In this article, we develope a method to express wave
functions of hole states in semiconductor quantum wire
(QWR) structures based on spatial variation of the valence
p-orbital Bloch functions, to show how envelope functions
relate to polarization-dependent interband transition. The
envelope components of the hole states in the QWRs are
represented as the six parts of �vr;� (r ¼ x; y; z; � ¼";#). The
envelope functions can be summarized as two sets of vector
fields defined as �v�ðy; zÞ � ð�vx;�ðy; zÞ; �vy;�ðy; zÞ; �vz;�ðy; zÞÞ
[� ¼";#]. The overlap integrals between the envelope
functions of the electrons and holes directly relate to the
polarization dependence of the optical transition between the
conduction- and valence-band states.

We have applied our method to two kinds of potential
profiles for ridge QWR structures with and without mirror-
symmetry at the band edge. We have also discussed the
polarization dependence of the interband optical transitions.
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Appendix A: Concrete Description of the Luttinger
Hamiltonian

In this appendix, we describe the form of the Luttinger
Hamiltonian we use in this article in choosing the y-
quantization axis. We also describe the form of the Luttinger
Hamiltonian in choosing the z-quantization axis.

Dupertuis et al. pointed out the importance of choosing an
optimal quantization axis corresponding to the potential
symmetry in order to symmetrize the envelope functions for
the whole Brillouin zone.30) They showed that the optimal
quantization axis for the mirror-symmetric potential is
perpendicular to the symmetric plane; namely, the y-axis
when Vð�y; zÞ ¼ Vðy; zÞ, and the z-axis when Vðy;�zÞ ¼
Vðy; zÞ.30) Figure A�1 shows three kinds of modeled QWR
structures: (a) a V-groove QWR, (b) a ridge QWR, and (c) a
T-shaped QWR. By choosing the [001] direction as the z-
direction, each confinement potential Vðy; zÞ satisfies the
relation Vð�y; zÞ ¼ Vðy; zÞ for (a) and (b), and Vðy;�zÞ ¼
Vðy; zÞ for (c). According to the discussions in ref. 30, we
should choose the y-direction as the quantization axis for (a)
and (b) and the z-direction for (c) to simplify the parity of the
envelope functions for the whole Brillouin zone.

First, we describe the form of the Luttinger Hamiltonian
we use in §2 in choosing the y-quantization axis. The
Luttinger Hamiltonian H�8 can be written using the spatially
varying Luttinger parameters 	1; 	2; and 	3,

36) such that

H�8 ¼

H1 b c 0

by H2 0 c

cy 0 H2 �b

0 cy �by H1

0
BBB@

1
CCCA; ðA�1Þ

where

H1 ¼ �
h�
2

2m0

"
k2x
2	1 � 	2 þ 3	3

2

� �

Fig. A�1. Three kinds of modeled mirror-symmetric QWR structures, (a)

a V-groove QWR, (b) a ridge QWR, and (c) a T-shaped QWR. Crystal

orientations for each structure are also shown.
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uv3=2 ¼
1ffiffiffi
2

p jðzþ ixÞ "i;

uv1=2 ¼
1ffiffiffi
6

p jðzþ ixÞ #i �
ffiffiffi
2

3

r
jy "i;

uv�1=2 ¼ �
1ffiffiffi
6

p jðz� ixÞ "i �
ffiffiffi
2

3

r
jy #i;

uv�3=2 ¼ �
1ffiffiffi
2

p jðz� ixÞ #i: ðA�3Þ

It should be noted that the real matrix elements of the
Luttinger Hamiltonian also make all the envelope compo-
nents of ð�v3=2; �v1=2; �v�1=2; �v�3=2Þ

T in eq. (2:4) real. The form
of the Luttinger Hamiltonian is the same for the structures in
Figs. A�1(a) and A�1(b), despite the different crystal
orientations of the x- and y-axes.

Next we describe the form of the Luttinger Hamiltonian in
choosing the z-quantization axis. The wave function of the
hole states is written as

�vðrÞ ¼
eikxxffiffiffiffiffi
Lx

p
X
jz

�v
0

jz
ðy; zÞ � uv

0

jz
; ðA�4Þ

where

uv
0

3=2 ¼
1ffiffiffi
2

p jðxþ iyÞ "0i;

uv
0

1=2 ¼ i
1ffiffiffi
6

p jðxþ iyÞ #0i �
ffiffiffi
2

3

r
jz "0i

" #
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uv
0
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6

p jðx� iyÞ "0i �
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2

3

r
jz #0i;

uv
0

�3=2 ¼ i �
1ffiffiffi
2

p jðx� iyÞ #0i
� �

: ðA�5Þ

The spin Bloch parts j "0i and j #0i are different from
those in eq. (A�3), since we use a different quantization axis.

The p-orbital Bloch parts jxi, jyi, and jzi are the same as
those in eq. (A�3). The Luttinger Hamiltonian H0

�8
is written

as,

H0
�8

¼

H0
1 b0 c0 0

b0y H0
2 0 c0

c0y 0 H0
2 �b0

0 c0y �b0y H0
1

0
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CCCA ðA�6Þ

where

H0
1 ¼ �

h�
2

2m0

"
k2x 	1 þ 	2
� �

�
@

@y
	1 þ 	2
� � @

@y

�
@

@z
	1 � 2	2
� � @

@z

#
;

H0
2 ¼ �

h�
2

2m0

"
k2x 	1 � 	2
� �

�
@

@y
	1 � 	2
� � @

@y

�
@

@z
	1 þ 2	2
� � @

@z

#
;

b0 ¼
h�
2

2m0

ffiffiffi
3

p
"
kx 	3

@

@z
þ

@

@z
	3

� �

�
@

@y
	3

@

@z
þ

@

@z
	3

@

@y

� �#
;

c0 ¼
h�
2

2m0

ffiffiffi
3

p
"
	3k

2
x þ

@

@y
	3

@

@y
� kx 	2

@

@y
þ

@

@y
	2

� �#
:

ðA�7Þ

All the matrix elements of the Luttinger Hamiltonian are
real operators, so all the envelope components of ð�v03=2; �v

0

1=2;
�v

0

�1=2; �
v0

�3=2Þ
T are also real. Then the wave function of the

hole states can be recomposed as
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eikxxffiffiffiffiffi
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#
;
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Note that the �v
0

y;�0 and �v
0

z;�0 are real functions, while the
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�v
0

x;�0 are pure imaginary functions. Thus only the two-
dimensional vector ½�v0y;�0 ðy; zÞ; �v

0

z;�0 ðy; zÞ� defined as the y-
and z-parts of �v

0

�0 ðy; zÞ ¼ ð�v0x;�0 ; �v
0

y;�0 ; �
v0

z;�0 Þ exists in real
space, which is the same as what we discuss in §2 in
choosing the y-quantization axis. The shapes of these �v

0

r;�0

are different from those of the �vr;� in eq. (2:5), since the
corresponding spin Bloch parts are different.

Appendix B: Parity of the Envelope Wave Functions
with Mirror-Symmetric Confinement Po-
tential

In this appendix, we consider the parity of the recomposed
envelope functions when we assume that the confinement
potential has mirror symmetry Vð�y; zÞ ¼ Vðy; zÞ and
Vðy;�zÞ ¼ Vðy; zÞ.

When Veð�y; zÞ ¼ Veðy; zÞ for electrons, substituting �y

for y in eq. (2:2) proves that �cð�y; zÞ satisfies the same
Schrödinger equation as �cðy; zÞ. We then derive the relation
�cð�y; zÞ ¼ ��cðy; zÞ.37) The envelope functions of electrons
are thus always even or odd with respect to y when
Veð�y; zÞ ¼ Veðy; zÞ. When Veðy;�zÞ ¼ Veðy; zÞ, the relation
�cðy;�zÞ ¼ ��cðy; zÞ is thus satisfied.

As for holes, in choosing the y-quantization axis,
substituting �y for y in eq. (A�2) gives
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� �
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b �
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� �
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� �
;

c �
@

@y
;
@

@z

� �
¼ c

@

@y
;
@

@z

� �
: ðB�1Þ

When Vhð�y; zÞ ¼ Vhðy; zÞ, these properties of the Luttinger
Hamiltonian cause the following two sets of envelope
functions to satisfy the same Schrödinger equation:

�v3=2ðy; zÞ
�v1=2ðy; zÞ
�v�1=2ðy; zÞ
�v�3=2ðy; zÞ

0
BBB@

1
CCCAand

�v3=2ð�y; zÞ
��v1=2ð�y; zÞ
�v�1=2ð�y; zÞ
��v�3=2ð�y; zÞ

0
BBB@

1
CCCA: ðB�2Þ

We can choose the eigen envelope functions to satisfy the
relation

�v3=2ðy; zÞ
�v1=2ðy; zÞ
�v�1=2ðy; zÞ
�v�3=2ðy; zÞ

0
BBB@

1
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0
BBB@

1
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Equation (B�3) then leads to the below relation for the
recomposed envelope function.

�vx;"ðy; zÞ
�vy;"ðy; zÞ
�vz;"ðy; zÞ
�vx;#ðy; zÞ
�vy;#ðy; zÞ
�vz;#ðy; zÞ

0
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¼ �

�vx;"ð�y; zÞ
��vy;"ð�y; zÞ
�vz;"ð�y; zÞ
��vx;#ð�y; zÞ
�vy;#ð�y; zÞ
��vz;#ð�y; zÞ

0
BBBBBBBB@

1
CCCCCCCCA
: ðB�4Þ

Therefore, the parities of the components of �v�ðy; zÞ=
(�vx;�ðy; zÞ, �vy;�ðy; zÞ,�vz;�ðy; zÞ) become (even, odd, even) or
(odd, even, odd) with respect to y, as shown in Figs. 4–6.

In choosing the z-quantization axis, substituting �z for z
in eq. (A�7) gives,
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� �
: ðB�5Þ

Thus, when Vhðy;�zÞ ¼ Vhðy; zÞ, we can choose the eigen
envelope functions to satisfy the relation

�v
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which leads to the relation
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Therefore, the parities of the components of �v
0

�0 ðy; zÞ =
(�v

0

x;�0 ðy; zÞ, �v
0

y;�0 ðy; zÞ, �v
0

z;�0 ðy; zÞ) become (even, even, odd) or
(odd, odd, even) with respect to z.
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