発光励起スペクトルを用いた T型量子細線中の励起子励起状態の観測 東大物性研、科技団、ルーセント・ベル研^A 伊藤弘毅、早水裕平、吉田正裕、秋山英文、 Loren N.Pfeiffer^A、Ken W.West^A

アウトライン

- T型量子細線について
- 実験手法について
- 理論計算について

- 比較・議論

T型量子細線とは?

量子細線 (quantum wire)

- ・人工的な擬1次元系
- ・デバイス応用及び1次元系の基礎物性への理解が目的 **T型**
- ・二段階のMBE成長で、量子井戸をT型に交差 →井戸の交線は量子細線として振る舞う

試料の詳細

Arm well, Stem well の交線に 6nm x 14nm の量子細線が形成

前回(日本物理学会'02 秋季大会)の報告

Szymanskaらの計算

電子は基底状態にある(20番目の準位まで)

正孔の状態は様々に変わる

励起子の状態も様々に変わる

基底状態で励起子や正孔は良く閉じこもる

「正孔の励起状態」を含む「励起子の基底状態」 正孔は端のポテンシャルを感じる →エネルギーのズレ小(正孔の質量は重い)

「正孔の基底状態」を含む「励起子の励起状態」 励起子は端のポテンシャルを感じる →エネルギーのズレ大(電子の質量は軽い)

まとめ

結論

- ・T型量子細線の偏光依存PLEを精度良く観測した
- ・理論計算との比較と併せ、各ピークの起源を明らかに した

- ・偏光依存も含めた、振動子強度のより正確な見積もり (=全ての正孔バンドを考慮した計算)
- ・試料、励起場所を変えた測定

Ogawaらの計算結果

Szymanskaらの計算結果 --- 1-4

Szymanskaらの計算結果 -- 5-8

Szymanskaらの計算結果 -- 9-12

Szymanskaらの計算結果 -- 13-16

Szymanskaらの計算結果 -- 17-20

Szymanskaらの計算結果 -- 25-27, 98

計算結果 -- 振動子強度

#	strength	exciton	hole
1	1.000e+00	g	g
2	7.889e-09	g	2nd
3	1.377e-32	2nd	g
4	4.496e-04	g	3rd
5	1.428e-01	3rd	g
6	2.221e-42	2nd	2nd
7	1.402e-09	g	4th
8	2.097e-33	2nd	3rd
9	1.200e-09	3rd	2nd
10	2.031e-32	4th	g
11	8.127e-04	g	5th
12	3.864e-42	2nd	4th
13	3.790e-04	3rd	3rd?
14	9.864e-42	4th	2nd
15	2.939e-07	3rd	4th
16	3.204e-01	5th	g
17	6.771e-34	4th	3rd
18	5.142e-02	?	?
19	1.241e-36	2nd	5th
20	8.917e-08	g	6th

計算結果 -- 振動子強度

- ・励起子の励起状態
- ・正孔の基底状態
- ・エネルギーのズレ大 (電子軽い→端の影響大)
- ・振動子強度は大

#	strength	exciton	hole
1	1.000e+00	g	g
2	7.889e-09	g	2nd
3	1.377e-32	2nd	g
4	4.496e-04	g	3rd
5	1.428e-01	3rd	g
6	2.221e-42	2nd	2nd
7	1.402e-09	g	4th
8	2.097e-33	2nd	3rd
9	1.200e-09	3rd	2nd
10	2.031e-32	4th	g
11	8.127e-04	g	5th
12	3.864e-42	2nd	4th
13	3.790e-04	3rd	3rd?
14	9.864e-42	4th	2nd
15	2.939e-07	3rd	4th
16	3.204e-01	5th	g
17	6.771e-34	4th	3rd
18	5.142e-02	?	?
19	1.241e-36	2nd	5th
20	8.917e-08	g	6th

計算結果 -- 振動子強度

- ・励起子の励起状態
- ・正孔の基底状態
- ・エネルギーのズレ大 (電子軽い→端の影響大)
- ・振動子強度は大

#	strength	exciton	hole
1	1.000e+00	g	g
2	7.889e-09	g	2nd
3	1.377e-32	2nd	g
4	4.496e-04	g	3rd
5	1.428e-01	3rd	g
6	2.221e-42	2nd	2nd
7	1.402e-09	g	4th
8	2.097e-33	2nd	3rd
9	1.200e-09	3rd	2nd
10	2.031e-32	4th	g
11	8.127e-04	g	5th
12	3.864e-42	2nd	4th
13	3.790e-04	3rd	3rd?
14	9.864e-42	4th	2nd
15	2.939e-07	3rd	4th
16	3.204e-01	5th	g
17	6.771e-34	4th	3rd
18	5.142e-02	?	?
19	1.241e-36	2nd	5th
20	8.917e-08	g	6th

- ・励起子の基底状態
- ・正孔の励起状態
- ・エネルギーのズレ小 (正孔重い→端の影響小)