Photoluminescence excitation spectra in T-shaped quantum wires

H. Itoh, Y. Hayamizu, M. Yoshita, H. Akiyama
ISSP (Institute for Solid State Physics), University of Tokyo, Japan

K. W. West and L. N. Pfeiffer
Bell Laboratories, Lucent Technologies, USA

Outline
- About T-wire
- Experimental method and results
- Computational method
- Comparison and Discussion
about "T-shaped quantum wire"

quantum wire
- quasi one-dimensional system
- interest on physics and application

T-shape
- 2-stepped growth of quantum well (cleaved edge overgrowth)
 → the intersection of them behaves as a quantum wire
20 T-wires (6nm x 14nm) are formed at the intersections of "Arm well" (6nm) and "Stem well"s (14nm)
Experimental method (PLE)

Excitation excited at: $\approx 7\, \mu W$

$\approx 4\, K$ (in cryostat)

by: tunable cw-TiS laser (resolution: 0.3 [meV])
Experimental results (overview)

- Excitation power: $6.7 \mu W$
- Temperature: 3.7 K

Photon Energy [eV]

PL Intensity (arb. units)

- Core
- Cladding
- Stem well
- Arm well

* Typical optical anisotropy in both "Stem well" and "Arm well"

* Physics of quantum wire exists in pink region

PLE spectrum of T-wire sample
Experimental results (detail)

- 1D continuum state
\[\propto E^{-\frac{1}{2}}(1D \text{DoS}) \]
suppressed by strong Coulomb interaction
Ogawa and Takagahara
PRB 43 14325 (1991)

- "1st excited state"
excitonic state of electron in 1st subband and hole in 2nd subband
Szymanska et al.
PRB 63 205317 (2001)
The computational method by Szymanska et al.

\[\mathcal{H} = \mathcal{H}_e + \mathcal{H}_h + q \]

one-particle Hamiltonian of an electron and a heavy hole (effective mass approximation)

Coulomb interaction

diagonalized by the basis set of:

\[\sum_{i,j,k} c_{i,j,k} \sin \left(\frac{z \pi}{L_z} k - \frac{\pi}{2} k \right) \chi_i^e(x_e, y_e) \chi_j^h(x_h, y_h) \]

plane wave in \(z \) axis

one-particle electron

one-particle heavy hole

\[\mathcal{N}: \text{number of the states} \]

\[z = z_e - z_h \]

relative axis

(and the energy of 1D-continuum and 2D exciton, also)
comparison

[Graph showing PL intensity vs. photon energy]

- PL Intensity (arb. units)
- Photon Energy [eV]
- T-wire
 - x 1/5
- Arm well
 - core
 - cladding
comparison

Photoluminescence Intensity

<table>
<thead>
<tr>
<th>Photon Energy [eV]</th>
<th>PL Intensity (arb. units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.575</td>
<td></td>
</tr>
<tr>
<td>1.582</td>
<td></td>
</tr>
<tr>
<td>1.586</td>
<td></td>
</tr>
<tr>
<td>1.596</td>
<td></td>
</tr>
</tbody>
</table>

- **T-wire**
- **2Dexc (Arm)**
- **Arm well core**
- **1Dcon**
- **Cladding**

Photon Energy vs. PL Intensity (arb. units)
comparison

![Graph showing PL Intensity (arb. units) vs. Photon Energy [eV]](image)

- **T-wire**
- **2Dexc (Arm)**
- **Arm well**

- **Plotted Peaks:**
 - 1Dcon
 - x 1/5
 - Cladding

- **Energy Points:**
 - 1.575 eV
 - 1.580 eV
 - 1.586 eV
 - 1.582 eV
 - 1.596 eV
 - 1.600 eV
<table>
<thead>
<tr>
<th>x_e</th>
<th>y_e</th>
<th>x_h</th>
<th>y_h</th>
<th>$x_e - x_h$</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ground state (no node)
wavefunction (1 - 5)

2nd state (hole excited)
wavefunction (1 - 5)

3rd state (exciton excited)
"excited hole" series
wavefunction (1 - 5)

exciton Rydberg series
comparison

![Graph showing comparison between T-wire and Arm well photoluminescence intensity.](image-url)
comparison

![Graph showing PL intensity vs photon energy with T-wire, 2D excitation (Arm), 1D confinement (1Dcon), and cladding regions marked.](image-url)
comparison

PL Intensity (arb.units)

Photon Energy [eV]

1Dcon

2Dexc

(Arm)

x 1/5

T-wire

Arm well

1 Arm well (binding energy) = 14 [meV]

PL Intensity (arb.units)

Photon Energy [eV]
summary

conclusion
- T-wire exciton ground state and 1D continuum states were separately observed.

- The oscillator strength of T-wire exciton ground state is very large, while the absorption of 1D continuum states is small. *(Nature of 1D system)*

- The binding energy of the T-wire exciton is 14 [meV]

- We attribute some small peaks to the exciton states consisting of excited hole subbands.

future problem
- A calculation in the form of Luttinger Hamiltonian
probed region

PL spectrum excited at 758[nm] (1.635[eV])

![Graph showing PL spectrum with integrated region and energy scale from 1.568 to 1.576 eV]
Exactly calculated optical absorption spectra in 1D electron-hole system.

To avoid divergence of E_b, the potential $-\frac{e^2}{\epsilon(|z| + z_0)}$ is introduced.

Ogawa and Takagahara PRB 43 14325 (1991)

Sommerfelt factor $S_{1D} < 1$ --- specific in 1D system \(\text{cf. } S_{2D}, S_{3D} > 1 \)

\[
S = \frac{\text{absorption with Coulomb potential}}{\text{absorption without Coulomb potential}}
\]
comparison

![Graph showing PL Intensity (arb. units) vs Photon Energy [eV].]

- **PL Intensity (arb. units)**
 - 1.600
 - 1.590
 - 1.586
 - 1.583
 - 1.575

- **Photon Energy [eV]**
 - 1.575
 - 1.582
 - 1.586
 - 1.596

- **T-wire**
- **2Dexc (Arm)**
- **Arm well**
- **1Dcon**
- **cladding**

- **core**
- **x 1/5**
- **3 5 9 16 27**

![Diagram labels and annotations for T-wire and Arm well regions.]
<table>
<thead>
<tr>
<th>x_e</th>
<th>y_e</th>
<th>x_h</th>
<th>y_h</th>
<th>$x_e - x_h$</th>
<th>z</th>
</tr>
</thead>
</table>

wavefunction (3, 5, 9, 16, 27)

exciton Rydberg series